Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.06.14.23291375

ABSTRACT

Objective: Obesity and type 2 diabetes (DM) are risk factors for severe COVID-19 outcomes, which disproportionately affect South Asian populations. This study aims to investigate the humoral and cellular immune responses to SARS-CoV-2 in adult COVID-19 survivors with obesity and DM in Bangladesh. Methods: In this cross-sectional study, SARS-CoV-2-specific antibody and T cell responses were investigated in 63 healthy and 75 PCR-confirmed COVID-19 recovered individuals in Bangladesh, during the pre-vaccination first wave of the COVID-19 pandemic in 2020. Results: In COVID-19 survivors, SARS-CoV-2 infection induced robust antibody and T cell responses, which correlated with disease severity. After adjusting for age, sex, DM status, disease severity, and time since onset of symptoms, obesity was associated with decreased neutralising antibody titers, and increased SARS-CoV-2 spike-specific IFN-{gamma} response along with increased proliferation and IL-2 production by CD8+ T cells. In contrast, DM was not associated with SARS-CoV-2-specific antibody and T cell responses after adjustment for obesity and other confounders. Conclusions: Obesity is associated with lower neutralising antibody levels and higher T cell responses to SARS-CoV-2 post COVID-19 recovery, while antibody or T cell responses remain unaltered in DM.


Subject(s)
Diabetes Mellitus, Type 2 , Myotonic Dystrophy , Diabetes Mellitus , Obesity , COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.28.23285084

ABSTRACT

Pronounced immune escape by the SARS-CoV-2 Omicron variant has resulted in large numbers of individuals with hybrid immunity, generated through a combination of vaccination and infection. Based primarily on circulating neutralizing antibody (NAb) data, concerns have been raised that omicron breakthrough infections in triple-vaccinated individuals result in poor induction of omicron-specific immunity, and that a history of prior SARS-CoV-2 in particular is associated with profound immune dampening. Taking a broader and comprehensive approach, we characterized mucosal and blood immunity to both spike and non-spike antigens following BA.1/BA.2 infections in triple mRNA-vaccinated individuals, with and without a history of previous SARS-CoV-2 infection. We find that the majority of individuals increase BA.1/BA.2/BA.5-specific NAb following infection, but confirm that the magnitude of increase and post-omicron titres are indeed higher in those who were infection-naive. In contrast, significant increases in nasal antibody responses are seen regardless of prior infection history, including neutralizing activity against BA.5 spike. Spike-specific T cells increase only in infection-naive vaccinees; however, post-omicron T cell responses are still significantly higher in previously-infected individuals, who appear to have maximally induced responses with a CD8+ phenotype of high cytotoxic potential after their 3rd mRNA vaccine dose. Antibody and T cell responses to non-spike antigens also increase significantly regardless of prior infection status, with a boost seen in previously-infected individuals to immunity primed by their first infection. These findings suggest that hybrid immunity induced by omicron breakthrough infections is highly dynamic, complex, and compartmentalised, with significant immune enhancement that can help protect against COVID-19 caused by future omicron variants.


Subject(s)
Breakthrough Pain , COVID-19 , Status Epilepticus
3.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.06.22275865

ABSTRACT

Both infection and vaccination, alone or in combination, generate antibody and T cell responses against SARS-CoV-2. However, the maintenance of such responses - and hence protection from disease - requires careful characterisation. In a large prospective study of UK healthcare workers (PITCH, within the larger SIREN study) we previously observed that prior infection impacted strongly on subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. Here, we report longer follow up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZ1222 (Oxford/AstraZeneca) vaccination and following a subsequent BNT162b2 booster vaccination. We make three important observations: Firstly, the dynamics of humoral and cellular responses differ; binding and neutralising antibodies declined whereas T and B cell responses were better maintained after the second vaccine dose. Secondly, vaccine boosting restored IgG levels to post second dose levels and broadened neutralising activity against variants of concern including omicron BA.1, alongside further boosting of T cell responses. Thirdly, prior infection maintained its impact driving larger T cell responses compared to never infected people, including after the third dose. In conclusion, the maintenance of T cell responses in time and against variants of concern may account for continued protection against severe disease.


Subject(s)
COVID-19 , Hallucinations
4.
ssrn; 2021.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3941809

ABSTRACT

Background: Patients with end-stage renal disease (ESRD) are vulnerable to SARS-CoV-2 infection and mount poor antibody responses to standard vaccines. We addressed whether ESRD patients could mount immune responses that protected against re-infection following natural SARS-CoV-2 infection or 2-dose vaccination.Methods: Haemodialysis (HD and renal transplant patients were recruited following SARS-CoV-2 infection (n=46) or before SARS-CoV-2 vaccination (n=94). SARS-CoV-2 IgG responses, surrogate neutralising antibody (NAb) titres to wildtype and VOCs, T cell responses and viral sequencing in the vaccine-naïve convalescent cohort were serially assessed following infection. Surrogate NAb titres were measured pre-vaccination and 33 days after 2nd vaccine. Incidence of breakthrough infection was assessed 180 days following 1st vaccination. Findings: 22% of vaccine-naive HD (n=9/36) and transplant patients (n=1/10) demonstrated PCR-positive re-infection (RI) at median 212 days (IQR 140-239) post 1st infection. Prior to RI episodes, RI patients demonstrated poor IgG Spike and RBD responses which were equivalent to levels in pre-pandemic sera (median RI titres: Spike 187 AU/ml, IQR 143-3432, p=0.96; RBD 145 AU/ml, IQR 85-938, p>0.99), unlike patients who developed a single infection only (SI) when compared to pre-pandemic sera (median SI titres: Spike 22826 AU/ml, IQR 1255-63811, p<0.0001; RBD 9588 AU/ml, IQR 270-21616, p=0.001). IgG Spike and RBD titres increased following RI compared to pre-pandemic sera (median RI titres: Spike 22611 AU/ml, IQR 4488-75509, p=0.0006; RBD 6354 AU/ml, IQR 1671-20962, p=0.01). T cell analysis revealed no differences between RI and SI cohorts. Following 2-dose vaccination, 5% of the HD cohort who received AZD1222 (n=3/61) developed breakthrough infection at 6 months following 1st vaccination, unlike those who received BNT162b2 (n=0/16). AZD1222-vaccinated, infection-naïve (I-N) HD patients (n=32) and immunosuppressed transplant recipients (n=17) made poor NAb responses to wildtype, alpha, beta and gamma when compared to infection-experienced (I-E) HD patients (n=29) (I-N vs I-E HD wildtype p<0.0001, alpha p=0.0007, beta p<0.0001, gamma p=0.002). NAb responses improved with BNT162b2 vaccination (n=16); RI patients mounted larger NAb responses to AZD1222 vaccination than SI patients (wildtype p=0.01, alpha p=0.02, beta p<0.02). Interpretation: ESRD patients are highly susceptible to SARS-CoV-2 re-infection, or breakthrough infection following vaccination, associated with poor protective antibody responses. SARS-CoV-2-specific IgG and surrogate NAb responses increase with repeated exposure (infection experience and/or vaccination) in patients who survive infections. Our findings support the case for specific booster regimens in such immune-incompetent patients. Funding Information: Oxford Transplant Foundation, Oxfordshire Health Services Research Committee, UK Department of Health and Social Care, Huo Family Foundation, NIHR (COV19-RECPLAS), UK Coronavirus Immunology Consortium, NIHR Oxford Biomedical Research Centre, WT109965MA.Declaration of Interests: We declare no competing interestsEthics Approval Statement: Haemodialysis (HD) and transplant cohorts: In this prospective, observational cohort study, HD and transplant patients within Oxford University Hospitals NHS Foundation Trust(OUH) were recruited under Oxford Radcliffe Biobank approved studies, “Biomarkers to stratify risk in Renal Transplant Recipients and Dialysis Patients with Covid-19” (ref: ORB 20/A056), and “Immunological responses to COVID-19 vaccines in transplant and haemodialysis patients” (ref: ORB 21/A014). The Oxford Radcliffe Biobank has a favorable ethics opinion from the South Central Oxford Committee C (REC: 19/SC/0173). Healthcare Worker cohort (HC, PITCH study): PITCH is a sub-study of the SIREN study which was approved by the Berkshire Research Ethics Committee, Health Research 250 Authority (IRAS ID 284460, REC reference 20/SC/0230), with PITCH recognised as a sub-study on 2 December 2020. SIREN is registered with ISRCTN (Trial ID:252 ISRCTN11041050)The study was conducted in compliance with all relevant ethical regulations for work with human participants, and according to the principles of the Declaration of Helsinki (2008) and the International Conference on Harmonization (ICH) Good Clinical Practice (GCP) guidelines. Written informed consent was obtained for all patients enrolled in the study.


Subject(s)
COVID-19 , Kidney Failure, Chronic
5.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.28.21264207

ABSTRACT

Duration of protection from SARS-CoV-2 infection in people with HIV (PWH) following vaccination is unclear. In a sub-study of the phase 2/3 the COV002 trial (NCT04400838), 54 HIV positive male participants on antiretroviral therapy (undetectable viral loads, CD4+ T cells >350 cells/ul) received two doses of ChAdOx1 nCoV-19 (AZD1222) 4-6 weeks apart and were followed for 6 months. Responses to vaccination were determined by serology (IgG ELISA and MesoScale Discovery (MSD)), neutralisation, ACE-2 inhibition, gamma interferon ELISpot, activation-induced marker (AIM) assay and T cell proliferation. We show that 6 months after vaccination the majority of measurable immune responses were greater than pre-vaccination baseline, but with evidence of a decline in both humoral and cell mediated immunity. There was, however, no significant difference compared to a cohort of HIV-uninfected individuals vaccinated with the same regimen. Responses to the variants of concern were detectable, although were lower than wild type. Pre-existing cross-reactive T cell responses to SARS-CoV-2 spike were associated with greater post-vaccine immunity and correlated with prior exposure to beta coronaviruses. These data support the on-going policy to vaccinate PWH against SARS-CoV-2, and underpin the need for long-term monitoring of responses after vaccination.


Subject(s)
HIV Infections , Hallucinations , COVID-19
8.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-269242.v1

ABSTRACT

Safe and effective vaccines will provide essential medical countermeasures to tackle the COVID-19 pandemic. Here, we evaluate the safety, immunogenicity and efficacy of the intradermal delivery of INO-4800, a synthetic DNA vaccine candidate encoding the SARS-CoV-2 spike protein in the rhesus macaque model. Single and 2 dose vaccination regimens were evaluated. Vaccination induces both binding and neutralizing antibodies, along with IFN-γ-producing T cells against SARS-CoV-2. Upon administration of a high viral dose (5 x 106 pfu) via the intranasal and intratracheal routes we observe significantly reduced virus load in the lung and throat, in the vaccinated animals compared to controls. 2 doses of INO-4800 is associated with more robust vaccine-induced immune responses and improved viral protection. Importantly, histopathological examination of lung tissue provides no indication of vaccine-enhanced disease following SARS-CoV-2 challenge in INO-4800 immunized animals. This vaccine candidate is currently under clinical evaluation as a 2 dose regimen.


Subject(s)
COVID-19
9.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-226857.v1

ABSTRACT

Both natural infection with SARS-CoV-2 and immunization with a number of vaccines induce protective immunity. However, the ability of such immune responses to recognize and therefore protect against emerging variants is a matter of increasing importance. Such variants of concern (VOC) include isolates of lineage B1.1.7, first identified in the UK, and B1.351, first identified in South Africa. Our data confirm that VOC, particularly those with substitutions at residues 484 and 417 escape neutralization by antibodies directed to the ACE2-binding Class 1 and the adjacent Class 2 epitopes but are susceptible to neutralization by the generally less potent antibodies directed to Class 3 and 4 epitopes on the flanks RBD. To address this potential threat, we sampled a SARS-CoV-2 uninfected UK cohort recently vaccinated with BNT162b2 (Pfizer-BioNTech, two doses delivered 18-28 days apart), alongside a cohort naturally infected in the first wave of the epidemic in Spring 2020. We tested antibody and T cell responses against a reference isolate (VIC001) representing the original circulating lineage B and the impact of sequence variation in these two VOCs. We identified a reduction in antibody neutralization against the VOCs which was most evident in the B1.351 variant. However, the majority of the T cell response was directed against epitopes conserved across all three strains. The reduction in antibody neutralization was less marked in post-boost vaccine-induced than in naturally-induced immune responses and could be largely explained by the potency of the homotypic antibody response. However, after a single vaccination, which induced only modestly neutralizing homotypic antibody titres, neutralization against the VOCs was completely abrogated in the majority of vaccinees. These data indicate that VOCs may evade protective neutralising responses induced by prior infection, and to a lesser extent by immunization, particularly after a single vaccine, but the impact of the VOCs on T cell responses appears less marked. The results emphasize the need to generate high potency immune responses through vaccination in order to provide protection against these and other emergent variants. We observed that two doses of vaccine also induced a significant increase in binding antibodies to spike of both SARS-CoV-1 & MERS, in addition to the four common coronaviruses currently circulating in the UK. The impact of antigenic imprinting on the potency of humoral and cellular heterotypic protection generated by the next generation of variant-directed vaccines remains to be determined.

10.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-224655.v1

ABSTRACT

Both natural infection with SARS-CoV-2 and immunization with a number of vaccines induce protective immunity. However, the ability of such immune responses to recognize and therefore protect against emerging variants is a matter of increasing importance. Such variants of concern (VOC) include isolates of lineage B1.1.7, first identified in the UK, and B1.351, first identified in South Africa. Our data confirm that VOC, particularly those with substitutions at residues 484 and 417 escape neutralization by antibodies directed to the ACE2-binding Class 1 and the adjacent Class 2 epitopes but are susceptible to neutralization by the generally less potent antibodies directed to Class 3 and 4 epitopes on the flanks RBD. To address this potential threat, we sampled a SARS-CoV-2 uninfected UK cohort recently vaccinated with BNT162b2 (Pfizer-BioNTech, two doses delivered 18-28 days apart), alongside a cohort naturally infected in the first wave of the epidemic in Spring 2020. We tested antibody and T cell responses against a reference isolate (VIC001) representing the original circulating lineage B and the impact of sequence variation in these two VOCs. We identified a reduction in antibody neutralization against the VOCs which was most evident in the B1.351 variant. However, the majority of the T cell response was directed against epitopes conserved across all three strains. The reduction in antibody neutralization was less marked in post-boost vaccine-induced than in naturally-induced immune responses and could be largely explained by the potency of the homotypic antibody response. However, after a single vaccination, which induced only modestly neutralizing homotypic antibody titres, neutralization against the VOCs was completely abrogated in the majority of vaccinees. These data indicate that VOCs may evade protective neutralising responses induced by prior infection, and to a lesser extent by immunization, particularly after a single vaccine, but the impact of the VOCs on T cell responses appears less marked. The results emphasize the need to generate high potency immune responses through vaccination in order to provide protection against these and other emergent variants. We observed that two doses of vaccine also induced a significant increase in binding antibodies to spike of both SARS-CoV-1 & MERS, in addition to the four common coronaviruses currently circulating in the UK. The impact of antigenic imprinting on the potency of humoral and cellular heterotypic protection generated by the next generation of variant-directed vaccines remains to be determined.

11.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.17.300335

ABSTRACT

The yeast Pichia pastoris is a cost-effective and easily scalable system for recombinant protein production. In this work we compared the conformation of the receptor binding domain (RBD) from SARS-CoV-2 Spike protein expressed in P. pastoris and in the well established HEK-293T mammalian cell system. RBD obtained from both yeast and mammalian cells was properly folded, as indicated by UV-absorption, circular dichroism and tryptophan fluorescence. They also had similar stability, as indicated by temperature-induced unfolding (observed Tm were 50 {degrees}C and 52 {degrees}C for RBD produced in P. pastoris and HEK-293T cells, respectively). Moreover, the stability of both variants was similarly reduced when the ionic strength was increased, in agreement with a computational analysis predicting that a set of ionic interactions may stabilize RBD structure. Further characterization by HPLC, size-exclusion chromatography and mass spectrometry revealed a higher heterogeneity of RBD expressed in P. pastoris relative to that produced in HEK-293T cells, which disappeared after enzymatic removal of glycans. The production of RBD in P. pastoris was scaled-up in a bioreactor, with yields above 45 mg/L of 90% pure protein, thus potentially allowing large scale immunizations to produce neutralizing antibodies, as well as the large scale production of serological tests for SARS-CoV-2.


Subject(s)
Severe Acute Respiratory Syndrome
12.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.17.302232

ABSTRACT

Single-cell RNA sequencing studies requiring intracellular protein staining, rare-cell sorting, or pathogen inactivation are severely limited because current high-throughput methods are incompatible with paraformaldehyde treatment, a very common and simple tissue/cell fixation and preservation technique. Here we present FD-seq, a high-throughput method for droplet-based RNA sequencing of paraformaldehyde-fixed, stained and sorted single-cells. We used FD-seq to address two important questions in virology. First, by analyzing a rare population of cells supporting lytic reactivation of the human tumor virus KSHV, we identified TMEM119 as a host factor that mediates reactivation. Second, we studied the transcriptome of lung cells infected with the 2 coronavirus OC43, which causes the common cold and also serves as a safer model pathogen for SARS-CoV-2. We found that pro-inflammatory pathways are primarily upregulated in abortively-infected or uninfected bystander cells, which are exposed to the virus but fail to express high level of viral genes. FD-seq is suitable for characterizing rare cell populations of interest, for studying high-containment biological samples after inactivation, and for integrating intracellular phenotypic with transcriptomic information.


Subject(s)
Neoplasms , Abortion, Septic
13.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.17.301614

ABSTRACT

We are in the midst of the third severe coronavirus outbreak caused by SARS-CoV-2 with unprecedented health and socio-economic consequences due to the COVID-19. Globally, the major thrust of scientific efforts has shifted to the design of potent vaccine and anti-viral candidates. Earlier genome analyses have shown global dominance of some mutations purportedly indicative of similar infectivity and transmissibility of SARS-CoV-2 worldwide. Using high-quality large dataset of 25k whole-genome sequences, we show emergence of new cluster of mutations as result of geographic evolution of SARS-CoV-2 in local population ({greater than or equal to}10%) of different nations. Using statistical analysis, we observe that these mutations have either significantly co-occurred in globally dominant strains or have shown mutual exclusivity in other cases. These mutations potentially modulate structural stability of proteins, some of which forms part of SARS-CoV-2-human interactome. The high confidence druggable host proteins are also up-regulated during SARS-CoV-2 infection. Mutations occurring in potential hot-spot regions within likely T-cell and B-cell epitopes or in proteins as part of host-viral interactome, could hamper vaccine or drug efficacy in local population. Overall, our study provides comprehensive view of emerging geo-clonal mutations which would aid researchers to understand and develop effective countermeasures in the current crisis.


Subject(s)
COVID-19
14.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.09.17.301093

ABSTRACT

A novel coronavirus, SARS-CoV-2, has been identified as the causative agent of the current COVID-19 pandemic. Animal models, and in particular non-human primates, are essential to understand the pathogenesis of emerging diseases and to the safety and efficacy of novel vaccines and therapeutics. Here, we show that SARS-CoV-2 replicates in the upper and lower respiratory tract and causes pulmonary lesions in both rhesus and cynomolgus macaques, resembling the mild clinical cases of COVID-19 in humans. Immune responses against SARS-CoV-2 were also similar in both species and equivalent to those reported in milder infections and convalescent human patients. Importantly, we have devised a new method for lung histopathology scoring that will provide a metric to enable clearer decision making for this key endpoint. In contrast to prior publications, in which rhesus are accepted to be the optimal study species, we provide convincing evidence that both macaque species authentically represent mild to moderate forms of COVID-19 observed in the majority of the human population and both species should be used to evaluate the safety and efficacy of novel and repurposed interventions against SARS-CoV-2. Accessing cynomolgus macaques will greatly alleviate the pressures on current rhesus stocks.


Subject(s)
COVID-19
15.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.05.29.123810

ABSTRACT

In December 2019 an outbreak of coronavirus disease (COVID-19) emerged in Wuhan, China. The causative agent was subsequently identified and named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which rapidly spread worldwide causing a pandemic. Currently there are no licensed vaccines or therapeutics available against SARS-CoV-2 but numerous candidate vaccines are in development and repurposed drugs are being tested in the clinic. There is a vital need for authentic COVID-19 animal models to further our understanding of pathogenesis and viral spread in addition to pre-clinical evaluation of candidate interventions. Here we report a dose titration study of SARS-CoV-2 to determine the most suitable infectious dose to use in the ferret model. We show that a high (5x106 pfu) and medium (5x104 pfu) dose of SARS-CoV-2 induces consistent upper respiratory tract (URT) viral RNA shedding in both groups of six challenged animals, whilst a low dose (5x102 pfu) resulted in only one of six displaying signs of URT viral RNA replication. The URT shedding lasted up to 21 days in the high dose animals with intermittent positive signal from day 14. Sequential culls revealed distinct pathological signs of mild multifocal bronchopneumonia in approximately 5-15% of the lung, observed on day 3 in high and medium dosed animals, with presence of mild broncho-interstitial pneumonia on day 7 onwards. No obvious elevated temperature or signs of coughing or dyspnoea were observed although animals did present with a consistent post-viral fatigue lasting from day 9-14 in the medium and high dose groups. After virus shedding ceased, re-challenged ferrets were shown to be fully protected from acute lung pathology. The endpoints of URT viral RNA replication in addition to distinct lung pathology and post viral fatigue were observed most consistently in the high dose group. This ferret model of SARS-CoV-2 infection presents a mild clinical disease (as displayed by 80% of patients infected with SARS-CoV-2). In addition, intermittent viral shedding on days 14-21 parallel observations reported in a minority of clinical cases.


Subject(s)
Coronavirus Infections , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL